STATUS OF SHIP WAKES IN SAR IMAGERY

J.K.E. Tunaley

London Research and Development Corporation, 114 Margaret Anne Drive, Ottawa, Ontario K0A 1L0 (613) 839-7943

BACKGROUND

Contribute to Maritime Domain Awareness Extraction of Independent Target Parameters - Confirmation/Validation of other Data (AIS) Need better Understanding of Ship Wakes Program of Study started at RMC, Kingston – RADARSAT-2 Images AIS Traffic Pattern Analysis Compare Open Ocean with Lake Ontario/Seaway

RADAR WAKE

INTERNAL WAVE WAKES

London Research and Development Corporation Range

OPTICAL WAKE

OUTLINE

Information from Wakes Gravity Wakes (Deep and Shallow Water) – Kelvin Internal – Unsteady (Surface and Internal) Turbulent Wake Surface Scattering SAR Effects

WAKE INFORMATION

Ship Course Ship Speed - From Wake Offset - From Kelvin Transverse Wavelength Potential for Information about: Propulsion System - Hull Form/Damage

KELVIN WAVELENGTHS

SIMULATED KELVIN WAKE

SIMULATED INTERNAL WAKE

Plot of Horizontal Wake Velocity Component

Speed= 15 m/sLayer Depth= 15 mFractional Density Change= 0.01

REAL AND SIMULATED

UNSTEADY GRAVITY WAKES

- Sinusoidal (or Random) Excitations
- Excitation due to
 - Heave and Pitch
 - Screws (Blade Frequency)
 - Reflection of Ambient Waves from Hull
- Wake Angle may be much Larger/Smaller than Kelvin Angle (39 degrees)
- Wave Crest Patterns can be Novel

UNSTEADY SINUSOIDAL

Omega = $\Omega U/g$; Critical Omega = 0.25

PROPELLER WAKE

TURBULENT WAKE

Comprises Random Vortices
May contain Steady Flows
Broadens slowly with Distance Astern, x
Width, b = Cx^{1/n}
Exponent 1/n depends on Environment and Propulsion

T-WAKE AND PROPULSION

Reciprocal Exponents, n	
Large linear momentum in wake. Under sail.	3
Large angular momentum (swirl). Small linear momentum. Single screw.	4
Negligible mean linear/angular momentum but linear momentum variance high. Under sail at low speed or non-screw propulsion.	≥4
High swirls. Small mean linear and angular momenta. Two contra-rotating screws.	≥5

AMBIENT SEA

Sea State = 4

RADAR SCATTERING

Bragg Scatter - Wright, 1968 Wave Breaking Slope Modulation Surface Flows Modify Bragg Waves and Trigger Breaking Surfactants

SAR EFFECTS

Speckle
Velocity Bunching
Synthetic Aperture Time (in Ultrafine)
Often Insufficient Resolution

 Moire Fringe Effects due to Aliasing

Bragg Wave Velocities (in Ultrafine)

TRAFFIC FROM AIS

Aug 6th, 2008 6:58LT

CONCLUSIONS

- Wake Theory to be Validated and Completed
 - Basics, Simulations and Visibility
- Inverse Problem Unexplored
- Significant Potential for MDA in Cross-Validation
 - Ship Velocity
 - Low Grade but Valuable Information for Fusion
 - Does not compensate for no AIS Fusion

Tel: (613) 839-7943 Email: jtunaley@rogers.com